DOCUMENT RESUME

ED 258 552 IR 011 707
AUTHOR Sleeman, D.; And Others
TITLE Pascal and High-School Students: A Study of

Misconceptions. Technology Panel Study of Stanford
‘ and the Schools. Occasional Report #0089.
INSTITUTION ctanford Univ., Calif. School of Education.

PUB DATE 7 84

NOTE ~ _t.; For related document, see IR 011 711.

PUB TYPE Reports ~ Research/Technical (143)

EDRS PRICE MF01,/PC02 Plus Postane.

DESCRIPTORS Course Evaluation; *Error Patterns; *Experimental

Teaching; High Schools; High School Students,

*rnstructional Material Evaluation; Learning

Experience; *Programxng. Programxng Languages;

Psychological Studies; Screening Tests; Teaching

Methods; Test Construction; Test Results
IDENTIFIERS *Pascal Programing Language

ABSTRACT

In an attempt to initiate a new approach to the
teaching of Pascal, a study was coenducted to ascertain the
difficulties students encountered when they attempt to learn this
computer language. Screen;ng tests were given to 68 students in
gradce 11 222 12 whe had jusi compleied a Sewmester course in rascai.
The purpose of the test was to detect possible difficulties in basic
constructs such as reading and printing data, assignments, ané the
several control structures provided by Pascal. This test that showed
over 50% of students had major difficulties with Pascal, and those
problems are described, with notations as to whether the errors were
frequent, or fairly frequent or occasional. A group of 35 students
were given a detailed clinical interview which is also described, and
their-explanations of why errcrs cccurred are given as well. A
discussion of the data includes a summary of the investigators'
assessment of the students interviewed and profiles of typical
students. Finally, a comparison is drawn between this and similar
studies, and the report concludes with a plan for future
investigations which will include: (1) a lc-~k at the difficulties
high school students have with advanced concevts of Pascal and also
with Logo; (2) an attempt to determine whether the errors noted in
this study can be remediated; and (3) experimentation with different
teaching/presentation strategies. (JB)

Y AR R R R R R R R XXX X222 R R RS R A R AR R R R SRS SR EREELE S,

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
AR R A A A AR A A AR R A A AR R AR RAAARN TR AR AR A ARAARA KA AR A AR AR A AR KA AR A kA h kR

ED258552

LRos 707

US. DEPARKTMENT OF EDUCATION &
NATHONAL iNSTITUTE OF EDUCATION
EDUCATIONAL RE SOURCES INFORMATION
CENTER (ERICH

JRire document nen oo morocucas s OCCASIOMAL REPORT # 009

I eved flom Ihe person O organuatian
afRinating 1

M chaoges have been rade 0 vrgnuve
reproduc o quaiity

® Pomits of view ar ojramns stated n the dowu
ment o Not necessdrdy represent affca NIE
PasOON Of poiky

'Te::hnalogy Panel

Study of Stanford and the Schools

Pascal and High-School Students:

A Study of Misconceptions

D. Sleeman
Ralph T. Putnam
Juliet A. Baxter
Laiani K. Ruspa

August 1984

These occasional reports present preliminary findings of research
underway or discuss issues of concern to the panel. They are intended to
stimulate comment and to maintain communication with interested parties
both within and outside the Study of Stanford and the Schools. They are
draft documents and are not to be quoted or cited. They do not
necessarily represent the views of Stanford, the Study as a whole, or
even the panel as a whole. Members of the panel and addresses where they
may be reached are included at the rear of the report. Comments of
readers will be great'y appreciated.

BEST COPY AVAILABLE

“PERMISSION TC REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY .

Derek Sleeman

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)”

b
1.

\Plléll and High-School Students:
-i

A Study of Misconceptions

e D. Slcenanl
Ralph T. Putnam
Juliet A. Baxter
Laiani X. Kuspa
Sctiool of Education

Stanford, University
Stanford, CA 94305

Abstract

A screening test was given to 3 classes of high school students, who
were just completing introductory semester-long courses in Pascal. These
tests vere graded, and subsequently 35 students weve given detailed
clinical interviews. These interviews showed that errors were made with
essentially every Pascal construct. Over half the students were
classified as having major difficulties -- less than 10% had no
difficulties.

The errors noted are discussed in detail in this paper. # major
finding is that the students attribute to the computer the reasoning
power of an average human., Th= paper also speculates about how difficult
it might be to remediate the errors found, and concludes with an outline -

of future work.

1. Introduction

The growing availability and use of computers in the past few years
has resulted in the introduction of programming courses in many schools.
Righ Schools offer instruction in progrlnmingvon the grounds that it
provides students with needed job skills, that it is an important
component of computer literacy, or that it is s poverful way to develop
problem-solving and analytical thinking skills. Because programming,
particularly in the high school curriculum, is & relatively new
phenomenon, we have & limited understanding of how these students learn
to program ~- the difficulties they have and the misconceptions they
dévelop. Understanding these issues should serve an important role in
improving instruction in this area as well as prﬁviding insight on the
more general area of the learning of complex skills.

It is widely accepted that to program effectively one must:

- have a good knowledge of the syntax and semantics of the

target programming language. (i.e. have an understanding of the

- econceptual machine supported by the programming langusge)

. be able to debug programs

. be able to sanslyze (complex) tasks and design algorithms aimed st

solving t(hese tasks.

-3—

The ability to understaad (or "read”) programs is a by-product of
the first two stag:s. Further, it is generally agreed that the topics
are listed above in their order of complexity. That is, task analysis
and algorithm design are the most demanding. Several researchers,
including Sheil (1981), look at this issue somewhat differently. While
not necessarily disagreeing witn the "sccepted" wisdom, Sheil argues that
when expert programmers are given a new task, they retrieve appropriate
chunks (such as a loop to add N numbers) from long-term memory and modify
these to solve t.e rurrent task, (Shneiderman, 1976). Sheil argues that
teachers of programming should be concerned about how to get novice
programmers to this state, suggesting that the traditional approach may
not be anpronriate. Tn soyorzl cther socaz, e 2. Phueicx and
Mathematics, Cognitive Science researchers have noted that the
organization of domain knowledge in experts is radically different from
that of novices (see for instance Gentner & Stevens, 1983). The key
educational question is how to produce instructizr~! sequences to
effectively convey the content and structure of expert knowledge to
novices. It is reasonable to suppose that Sheil would favour giving
students complete programs to read, analyze and wodify, and for each of
these programs to contain one or more useful "chunks". (The detail of
the language’s syntax and semantics would then be introduced as secondary
issues.) This is not & totally new idea (r2e Bork, 1971), and has been
partially included in many introductory level . sersity programming

courses. 2

-é_

Although intuitively we accept Sheil's basic point, in this study we
were not able to initiate a new approach to the tesching of Pascal.
Moreover we felt that further information about the difficulties
experienced by students when tsught programming using "traditiongl®
methods would provide additional empirical evidence. When we bygan our
study of programming classes in high schools, we expected to study the
three stages noted above. However, it soon became clear that a
significant number of studeats in the classes we studied had significant
difficulties with the first stage, and were thus hampered in their
attempts to implement and extend programs. The first stage - students'
knowledge of syntax and semantics-thus became thea focus of this study.

As noted earlisr. one main~r cemponcnt of loartilig Lu piugraw is
gaining an understanding of the “virtusl machine" (Wegner, 1971) or the
"conceptual machine" (Norwan, 1983) underlying a particular language -- a
working model of how various constructs in a language function (DuBoulay
& O'Shea, 1981). A programmer must know, for example, what happens when
IF or READLN statements are used in a Psscal program. The current study
explores some of the misunderstandings of the conceptual machi.z that
some students hold in the early stages of learning to program in Pascal.
We have concentrated primarily on their understanding of fundamental
construct§ such as variables, assignment, and several control constructs.
"® have examined to a lesser extent their ability to trace and debug
programs.

DuBoulay and O’'Shea (1981) provide a fairly comprehensive lﬁnnary of

earlier work on learning to program in commonly used languages, including

-5 =

BASIC, FORTRAN, LOGO, and Pascal. The majority of the studies they
revieved reported the constructs of a particular language with which
students had difficulty. Frequently the data pravided.included:
—— the constructs of the language that were most frequently used;
— the constructs of the languasge that were most frequently used
incorrectly;
== the error-proneness of thase constructs (where error-proneness is
the percent of total instances of a construct in which errors
were made);
-- some idea of the persistence of particular errors (where

persistence indicates the likelihood of them being removed).

The first detsiled analysis of the difficulties users have with
Pascal was undertaken by Ripley and Druseikis (1978) who did two studies.
In their first study of computer science graduate students, they reported
that 642 of the programs submitted were free of both syntactic and
semantic errors. In their second study of naive programmers, they
reported that 582 of the programs submitted were again free of syntactic
and semantic errors. With the latler group, the most cosmon syntax
errors were associated with the misuse of the semicoloa. The second most
comron source of error was declarstion, because of the restrictions on
the ordering of declaration keywords., Missing BEGINS and ENDS were the
third most common source of errors; Ripley and Druseikis argued that

these errors might be resolved if the language had more specific

-6 -

terminators, e.g. BEGINTHEN, BEGINELSE, ENDTHEN, ENDELSE, etc. to replace
the "universal™ BEGIN and END.

More re;ﬁntly Soloway and his co-worxers have analyzed the errors
which universi?y'studenta make vith assignment and loop constructs in
Pascal. The majority of their aralyses have been carried out on pPrograms
"which have been collected &utomatically by the operating system, (see
Soloway, Ehrlich, Bonar & Greenspan, 1982). More recently they have also
used interview techniques to probe students' understanding of the
assignment construct, showing that I:=I + 1 and SUM:= SUM +K were viewed
as different entitieﬂf i.e., the pragmatics of the situstion dominated
these students' interpretation (Bonar and Soloway, 1982). Another survey
showed that 34Z of the students belisved ther she WHILE statement acied
like a demon.?3

With the exception of the study just mentioned, a major omission in
all these studies is that fﬁey did not determine the nature of the errors
associated uifh variors constructs. They presented only the frequencies
with which certain construzts were incorrectly used in Programs written
by novice and sometimes expert programmers. Programmers who made errors
were not questioned to determine the nature of their misunderstandings.

Cognitive scientists working in other subject domains have
postulated mental models which people hold of various physical and
symbolic systems (Gentner & Stevens, 1983; Davis et al, 1978; Larkin et
al, 1980). Such studies have relied heavily on interview techniques to

reveal the nature of people's misunderstandings. We have applied this

A

-7 -

methodology to study students' understanding of ‘the conceptual machine of
8 programming language -- their mental mciels of the language.

The objective of this :xpetinent wvas to study the errors which
students made in interpreting programs -- and frow these begin to
understand the misconceptions of novice programmers. As & result of this
study we hope to facilitate bettér teaching of programming -- teaching
that avc{ds or corrects these misconceptions. We also hope this study
will provide some valuable insights into how students learn to work
skillfully in a complex formal system.

> Method

Subjects

Students from thres high=s~hnnl classes parsicineted in ehe zouds,
A pilot study was done with one class of 27 students; two additional
classes of 19 and 22 students respectively were involved. All three
classes vere introductory courses in Pascnl.4 Our studies took place
towards the end of each course. The majority of the students were from
grades 11 and 12 and had strong math backgrounds (as there were math
precequisites).

Screening Test

Prior to conducting the Pascal study we had carried out an analogous
study of the difficulties students encountered when they learn BASIC,
(Putnam et el., in press). For the BASIC study we had developed an
effective screening test and s set of more detailed question sheets
focusing on particular topics. The task at the beginning of the Pascal

study was to refine these tools (the test used is available from the

authors). _The purpose of the test is to detect possible difficulties in
basic constructs such as reading and printing dats, assignments, and the
several control structures provided by Pascal. Nine items require
writing the output produced by short (6 to 14 line) prograss, esach
designed to highlight specific concept(s). One task requires the
student to debug & program for which ¢ written description of the intent
has been provided. 1Two items address a similar tssk, but each program
uses 3 different control structure. The test took between 15 and 35
minutes for the students to complete. Because we asked questions about
programs which we had prepared, only the students' reading knowledge of
Pascal was tested. It would sppear that creating a program would be more
ccaplex than understanding a given (short) program, and an we sngoes=t
that this test represents a test of minimum competence.

The screening test was pretested with a class of 27 students. Minor
changes were made in the test before it was used with 2 additional
classes. In general the test and the questions used in the interviews
were fine-tuned for each class to refiect the teaching materials used,
the order in which concepts had been introduced, etc.

Pt

Experimental Procedure

The screening test was given to each student in the three classes.
Each student's performance was evaluated by one of the researchers who
decided that the student rhould be interviewed, was a marginal canaidate
for an interview, or did not need an interview (depending on whether the
student had nincr‘ar no difficulties, or manifested &8 well understood set

of misunderstandings). Interviews were conducted with 9, 15, and 11

10

-9 -

students respectively from the three classes (in the case of the first
class it vas not logistically possible to interview all the students for
vhom ao interview was suggested). The interviews were clinical in
nature, with interviewers using questions and short programs prepsred in
advance. but also following up with various probes and programs composed
on the spot. The goal was to clarify as f;r as poisible the nature and
extent of the student's misconceptions about programming concepts.

Student s were ssked to say what output would be produced by various
programs, to trace programs and explain how they work, and to debug short
programs. In several cases, students were asked to trace identical
programs with different sets of input data. The discussion of a
petliculas tupid geueraliy conmtinued uncii the reaearcher was able to
decide: i) the "precise" nature of the student's error, or ii) that th;
student had a variety of possible ways of interpreting a comstruct, or
iii) that the student had little knowledge of a particullr concept. The
interviewer also made & subjective assessment about his or her confsdence
in this prediction and also noted how corsistently the student had
manifested the several error(s) (for further details of this overall
methodology see Sleeman, in preparation). The standard programs and
program fragments used in many of the interviews are available from the
authors. Some supplementsry items created for individuals are included
i~ the text.

Tape recordings, vritte; notes, and responses generated during the

intervievs vere perused for patterns of errors and misconceptions. As

the study was exploratory and qualitative in nature, no quantitative

11

- 10 -

analysis techniques were used. Findings are discussed in the following
sections.

Sé:tion 2 gives =n overview of the efrorg encountered, with some
indication ¢f the frequency of their occur?ence. Section 3 gives several
summaries of the dats - including & discussion of fypical students with
minor and najbr difficulties, and & classification of the errors noted.
Secyion 4 compares the results of this experiient with earlier studies.

The paper concludes with suggestions for future studies.

-

2. Summary of Errors Encountered

A comment on error frequency

As noted above, the screaning tests were given tc 68 students ot
which 35 were subsequently interviewed. We shall refer to an error as

being frequent with this populat@on if it occurs with 257 or more of

the interview population (i.e. 8 or more students), fairly frequent

if it occurs with 4-7 students, and occasional if it occurs less
frequently (i,e. with '1-3 students). Note this figure does not capture
the frequency or the consistency with which each error was encountered
with individual students; specific comments gbout these asﬁectl will be
interspersed throughout this sec:ion;

2.1 Difficulties with READLN statements

Several students had diffizulty understanding how a READLN statement
assigns values tu a variable. Four categories of misconceptions

appeared: semantically constrained reads, data read in slphabetic order

12

- 11 -

of the variables, order of deciaration determines the order of reading

. from the file, and wmultiple-value readl.s

Semantically constrained reads [ICla.l]

Eleven students believed that & READLN stateaecat uscd with a

meaningful variable name csuses the program to select a vaiuc based on

-

the name's mesning. (Thus given the frequency classifivation given

earlier this is a frequent error). For exar:le, given the following

program: 6 N

PROGRAM Bl;
VAR First,Smallest,Largest: INTEGER;
BEGIN
WRITELN('Enter three numbers');
READLN(Largest, Smallest ,First);
END.

[5101]

The students with tnis error said that ' would be read into "smallest",
10 into “largest" and 5 into "first". The majority of these students
exhibited this error consistently on this program and in two other
programs where it could occur. The second program used to probe for this

¢ E€Iror was:

. PROGRAM B2;
VAR Even,0dd: INTEGER;
BEGIN
WRITELN('Enter two numbers');
READLN{Odd,Even);
END.
{23]

13

-12 -

Ten stucents read 3 into "odd" and 2 into “even".

Order of declaration determines the order of reldigg

This was & fairly frequent error and it showed up with:

PROGRAM B4;

VAR A, B,C: INTEGER;

BEGIN
WRITELN('Enter three numbers');
READLN(C, B,A)

END.

[15 25 20 }

These student. argued that A was assigned the first number, B the

second

number and C the third number "because of the order the variables were

declared”. Typically the interviewer then modified the order of the

variable declarations, and asked the students to rework the task.
cases the response was consistent with this error.

Multiple-values read into a variable

This frequently occuring error was noted in:

PROGRAM B3;

VAR Even,Odd: INTEGER;

BEGIN
WRITELN('Enter data: ');
READLN(Even, 0dd)

END.

[32105

14

In all

-13 -

These students consistently and confidently said that "even" was assigned
the values 2 and 10 and "odd" 3 and 5. The data set was then frequently

added to and the students continued fb manifest this error. Further,

s
vhen multiple-valued variables occur in a conditional statement these

students either said that the firat value is used for comparison or
that the comparison cannot be made or the program loops until the values
in the variables have been "used".

2.2 Difficulties with print statements

The following three errors occurred occasionally with WRITELN
statement s:
@) WRITELN('Enter a number: ') caused a number to be read; similarly
WRITELN('Enter 4 numbers: ') caused 4 numbers to be read.
b) WRITELN('Enter a number: ') caused the variable name and its
value to be printed.
c) After this statement has been executed the program can choose a
number from the data statement.
After we had encountered these students the following diagnostic
sequence was devised:
X:= 3;
WRITELN('The value of X is 1');
WRITELN(X);
All subsequent students who did not have the errors noted above were able
to cope with this correctly, but we are confident that the students with
this error would have given the answer "1". This item has been added to
our repetoire and will be used subsequently.

2.3 Assignment statements

15

- 14 -

The first item of the screening test was designed to detect
difficulties with assignment stsatemerts and supplementary examples
produced for the interviaws probe this construct further. Although the
several errors only occurred occasionally, a total of nine srudents had
difficulties with assignment statements. The difficulties noted include:
l. A:= B was interpreted as switching variables, A:=B and B:=A (3
students showed this error).

2, The assignment statement causes the instantisted statement to be
printed. Given the sequence A:=2; B:=3; A:=B; one student said the

computer would print 2 = 3.

3. The assignment statement had no effect (noted with 3 students).

4. A:= B was interpreted as A = B by 2 students.

2.4 Variasbles

The most significant "varigble" error was Ehe previously mentioned
multiple value error. The following errors have also been noted
occasionally:

1. Confusion of variables. In the sequence:
READLN(P); Q:= Q+1;
the latter statement is executed as if it wers:
Q:= P+l;
2. Values of variables sre printed when the variable is encountered on
the LHS (left-hand side) of an expression.
3. The value of the LHS variable is printed whenever its value changes.

2.5 Difficulties with loon cuastructions

A. Errors Common to both the FOR and WHILE constructs:

16

- 15 =

. 1. WRITELN adjacent to the locop is included in it, [IIIA2.,1]. This

error occurred frequently snd was noted with nearly half the students

interviewed. The programs which highlight this are:

PROGRAM G3;
VAR P,G: INTEGER;
BEGIN
Q:= 0
WRITE(‘Enter a number: ');
KEADLN(P);
WHILE P <O 0 DO
BEGIN
IF P > O THEN
Q:=Q + 1;
WRITE('Enter a number: ');
READLN(P)
END;
WRITELN(Q)
END.
{1-1-3240]

and

PROGRAM AS;
VAR I,X: INTEGER;
BEGIN
FOR I:= 1 TC 3 DO
BEGIN
WRITELN(' Enter a number.');
READLN(X)
END;
WRITELN(X)

END.
[6342418

17

-16 =
Curiously enough, those students who consistently make this error with
' the WHILE problem do not necessarily make it with the FOR loop, and vice
versa.

2. Data-driven Looping

Several students indicated that the number of numbers in the data

determined the times a loop was executed. Thus given the program:

PROGRAM A2Z;
VAR I, X: INTEGER;

BEGIN
FOR I:=1 TO 3 po
BEGIN
WRITELN('Enter a nuaber.');
READLN(X);
WRI TEL N(X)
END
END.

[6342418

We have observed the following output:
6342418
6 342418
63462418
The students explained that the number of values in the data set
determined the number of columns, and the valu- of the FOR-loop limit (in
this case 3) determined how many times the process was repeated.
Given 6 2 as input dﬁtﬁ this same student produced the following output:
6 2
6 2

6 2

18

-17 -

3. Scope groble-s

Several errors involved misconceptions atout which statements are
repeated in loops and where loops begin and end.

a) Only the last instruction of & loop is executed multiple times.

The other instructions are only executed once but the last instrugfipn is
executed the correct number of times. This error was noticed fairly
frequently, but it only occurred in a loop where a WRITELN statement was
the lact one in the loop (thus it may be this error was caused by the
write statement and not the loop construct).

b) BEGIN/END defines a loop. Two students thought that all the
numbers in the data set wouid be printed despite the absence of s FOR or

WHILE statement. The program is:

PRORAM A3;

VAR X: INTEGER;

BEGCIN
WRITELN('Enter & number.');
READLN(X);
WRITELN(X)

END.

(63426418]

”: & variant on this error, scope of the loop is determined by
indentation. In the case of some other programs, several students said
that the WRITELN "went together with the FOR loop because they were lined

up". One such program is:

13

- 18 -

PROGRAM DI:
VAR R, C: INTEGER;
BEGIN

FOR R:= 1 TO 4 DO

FEGIN
FOR C:= 1 T0 3 DO

WRITE ('#');
WRITELN
. END
END.

c) After a loop is executed control goes to the first statement of
tke program. ‘Thil error was seen occasionally and in short programs
could be interpreted as re-initializing varisbles each loop-cycle.

Although each of the scope errors in loops only srose occssionally,
the total number of students who had difficulties with the scope concept

was approximately one third of those interviewed.

B. Ecxors specific to FOR loops

We will just mote 2 sdditional errors.
1. The control varisble does not have a value inside the loop. (This
occurred fairly frequently.)

2. The FOR loop statement acted like a constraint on the embedded

READLN statement. A student said that only the numbers 3, 2, and 1 could

be read with:

20

-19 -

. PROGRAM AS;
VAR I,X: INTEGER;
EGIN)
FOR I:=1 TO 2 DO
EEGIN
WRITELN('Enter a number.')};
READLN(X)
END;
WRITELN(X)
END.

{634241 8

Although with this group of Pascal students this error only occurred
once, we have previously noted it occurred frequently with students

learning introductory BASIC.

2.6 Errors noted with IF statements

Four types of errors were noted occasionally with IF statements.
However, 8 students (or 25%) made at least one of the errors:
l. Program execution is halted if the condi.ion is false and there is no
ELSE braanch.
2. Both the THEN and the ELSE branches arec executed.
3. The THEN-statement is execv*ed whether or not the CONDITION is true.
4, IF <a> THEN ; <c>; is interpreted as
IF <a> THEN ELSE <c>;

2.7 Errors with procedures

These errors fell into two categories:
1. All statements including those in procedure bodies were executed in

the order they appeared. This was a frequent error.

21

- 20 -

2. A fairly frequently occurring variant is that procedures are executed
when they are encountered in a top-to-bottom scan of the program text and
again when they are called.

2.8 Tracing and Debugging

As noted earlier tracing and debugging were not emphasized in this
study, but we did include a program in the screening tesr and a program
in the subsidary material which highlighted th?le issues. Further,
interviewerl frequently asked students to trace some of the other
programs if they thought this would help determine the nature of the
students' difficulties. From this activity, the several interviewers
concluded that at least h{}f of the students could not trace through
programs systematically. Further, we concluded that these students often
decided what the program should do on the basis of a few key statements,
and would then “project this insight' onto the program as a whole.

1. Some students’ interpretation of the following program is
dominated by the variable Smallest -- "obviously this program is to find
the smallest of a set of numyers". Thus this program highlights a

variant of the semantic read misconception:

22

- 2] -

PROGRAM Il;
VAR Smallest, Number: INTEGER;
BEGIN
WRITELN(‘Enter a number: ');
READLN(Number); ‘

Smallest:= Number;
WHILE Smallest O 0 DO
BEGIN
IF Smallest > Number THEN
Smallest:» Number;
WRITELN('Enter a number: ');

READLN(Number)
END; .
WRITELN(Smallest)
END.

[95620]

These student assume that the first READLN(Number) statement resds the

lowest value from the data line because, the smallest number is needed in

the pext statement, Smallest:=Number. This error was noted occasionally.
2. Students' interpretation of several programs relied on what

would be reasonable output, rather than the actual output statements in

the program:

PROGRAM F2;
VAR Number: INTEGER;
BEGIN
WRITE(‘Enter a Number: ');
READLN(Number);
IF Number = 7 THEN
WRITELN('Unlucky Number');
IF Number = 10 THEN
WRITELN('Lucky Number');
WRITELN('The Number was', Number)
END.

f4ll10]f 7]}
For instance when the number 10 was read, students said something like

“"Well it will print LUCKY NUMBER and that's all as there's no point doing

23

-22 -

the next line as we know the value must be 10 as it's & lucky number", an
analogous explanation was given for the UNLUCKY number. These

explanations were encountered frequently.

3. Summary of the data

The data is both rich and complex and so we shall attempt several

overviews each of which will highlight some aspect.

Figure 1

Summary of Investigators' Assessment of Students Interviewed

Male Female Total
No difficulties 3 (8.62) 0 (0%) 3 (8.6%)
Minor difficulties 6 (17.14%) 8 (22.9%) 14 (40%)
Major difficulties 12 (34.282) 6 (17.142) 18 (51.4%)
21 14 35

3.1 Summary of all the students interviewed

Incorrect variants of virtually every construct in the Pascal
language were found with these students. At least 32 students out of the
total population of 68 students hsad minor problems, and 18 of them (or

27X) had major difficulties. Anecdotally, teachers report that students

24

- 23 -

debug prograus by a "trisl-and-error" method. This study lends esupport
to this view, as, in the case of many students, several Pascal constructs
are only partially understood (or sutject to muitiple interprecations),
thus making & trial-and-error approach the only realistic alternative!

This study shows that even after s full semester of Pascal,
students' knowledge of the conceptual machine underlying Pascal can be
very furzy. This is a wmore videspread problem than we had expected and
one which is not totally appreciated by the teachers vho frequently set &
performance~ based completion criteria for the class. Not unreasonsbly,
programming tasks are completed jointl? by several students often masking
the several misunderstandings of the individual students.

Each interviewer classified each student's performance as having
essentially no difficulties, minor- and major-difficulties; this
information is tabulated in figure !. PFrom this figure we note that 3 of
the students did not have any problem in the interview although the
screening test indicates they had. In most cases this has been
attributed to the students rushing the test or not taking it seriously.
(Note: all 3 were males). Of the remaining students, the figures show
they fall nearly equally between those who have minor and major
difficulties. However there is ¢ greater proportion of males who had
m jor difficulties than females, namely 12/18 males (66.6%) had major
diff.culties as compared with 6/14 (42.92) females. (These figures are
based on the population interviewed and not the total numbers screened).
Interestingly, our assessment of the students closely with the teacher's

evaluation.

25

-2 -

3.2 Profiles of typical students

So far in this paper wve have given an account of the errors which
have been noted in the population with some indication of the number of
students who manifested that error. By way of contrast, in thi; section
we will dgléripe all the difficulties noted for two students; one was
described as having minor difficulties and the other having major
difficulties.

Example of a student with minor difficulties.

This student appeared to have two errors:
1. Assignment being interpreted as a switch
A:= B is interpreted as A:= B and B:= A
(The student did not manifest this behavior consistently).
2, Statements in procedures are executed as they are encountered.
(The student appeared to be consistent with this error).
Note too that when we interviewed this class, procedures had only
recently been introduced.

Example of a student with major difficulties.

The errors reported with this student were:

1. Semantically constrained reads (& consistent error).

2. The alphadetic ordering of the -arisbles determines the order in
which the data is read (not applied comsistently).

3. Read a value when a variable is encountered in a statement (not used

consistently).

4. WRITELN('Enter & Number') causes s value to be read (not used

consistently).

26

-

- 28 -

5. WRITELN adjacent o a looup construct is considered a part of the loop
(a consistent error).
6. The numbar of data elements determines the number of times a loov is
exetuted (a consistent error).
7. The control variable does not have a value in the loop body.

8. The corder of sxecution of 2 statements was inverted consistently in

one program:

PROGRAM Gl; -
VAR Number: INTEGER;
BEGIN
Number:= 0;
WHILE Number < 5 DO
BEGIN
WRITELN(Number);
Numbe r: =Number + 1
END
END.

\

——

was exezuted as if tﬁe loop body was:

Number:= Number + 1; WRITELN(Number);

However, this behaviour was not noted with other programs.
9. Infer program function based on a number of commands.

. A section of the interview with this sludent is quoted in seczion
2.8 where this error is described. Essentially we believe this student’'s
interpretation of the program was dominated by several key statements in
the code, and the notion that the machine would act "reasonably'". Why, he

' argued, would the machine execute the last WRITELN which gives you the

27

- 26 -

value of the number, when it has already told you that the number was
lucky and so you'd know it had the value of 107

We have clu;sified this student as having major difficulties not
only because of the sizeable pumber of difficulties but because ve
believe some of the misconceptions will be hard to remediate. For
€xample, we believe that the last 2 errors (8 and 9) will be difficult to
remediate as here the student is calling upon a lot of common-sense
knowledge. This issue will be discussed again in section 3.3.

3.3 Error classification

Implied at the end of the last ~ibsection is the belief that some
misconceptions will be much easier to remediate than others. In the
algebra dowain, for instance, Sleeman has suggested that some errors
occur because the user omits one of the substeps of a rule which he

essentially knows; we have called these manipulative errors (Sleeman,

in press). Other crrors indicated that the student has little
understanding of basic conrepts in the algebra domain. For example we
have seen the éxpres:ion
3X+4X=19 changed to X + X =]9 -3 - 4
We have referred to errors of this sort ss being parsing errors. To
generalize this classification to programming, and possibly to other
domains, we propose referring to these classes of errors as surface and
. deep errnrs.7 We suggest that an example of a surface error in this
domain is seeing the FOR loop with range O to 5 as 1 to 5. Lack of
understanding of variables is z complex is:ues and we suggest should

be claased as a deep error. As indicsted earlier we believe that the

28

-27 -

inference of the functionality of a program from a few key instructions
is a deep error and one ‘hich arises from the user bringing common sense
reasoning to bear on & formally defined domain. In addition to this
issue we believe that many of the errors noted, for example, semantically
constrained reads can be explained by the user attributing to the machine
the reasoning power of an average human. We refer to this subclass of

errors as the "reasonably human® error class.

4. Comparison with the difficulties noted in this and other studies

Finally we should recall that for the most part we have presented
students with syntactically correct programs hence the significant
difference in these findings and those of Ripley and Druseikis, 1978.
However, we noticed that these students had considerable problems with
the notion of scope (which supports Ripley & Druseikis's third
observation, see.-section 1). Moreover, we generally noticed that the
students we worked with had only & furzy idea of syntax, and we would not ™™
be surprised if they made the types of punctuation errors noted in the
earlier study in their own programs.

With our séudents, only one student out of the 35 interviewed
treated the WHILE statement &s 8 demon, a marked contrast to the Yale

data.

29

- 28 -

5. FURTHER WORK

We plan to:

1. 1look at the difficulties high-school students have with more advanced
concepts of Pascal (in this study we only touched upon procedures);

2. investigate the difficulties which high-school students have with
LOGO (to give us a third point of reference);

3. determine whether it is possible to remediate the sort of errors we
noted in this study, If this is possible, try different remedie!
strategies to determine their effectiveness;

4. speculate further sbout how such misunderstandings arise and possiblf

experiment with different teaching/presentation strategies.

6. ACKNOWLEDGEMENTS

We wish to thank the teacher and students who participated in this
study. Haym Hirsch and Alan Char helped with the interviewing. Marcia
Linn helped by providing access to an earlier test of BASIC programming.
We also thank the Study of Stanford and the Schools, directed by Dean M.
Atkin and President Kennedy, and D. Walker and M. Lapper (Chairs of the
Panel on Education and Technology) for providiﬁg funding for the study.

Finally, Mrs. Dorothy Brink provided invaluable secretzrial support.

30

- 29 -

7. REFERENCES

Bonar, J. & Soloway, E. (1982). Uncovering principles & nmovice

programming. Research Report 240, Dept. of Computer Science Yale

University

Bork, A. M. (1971). Learning to program for the science student. J.

Educ, Data Processing, 8, pp. 1-5.

Davis, R. B., Jockusch, E. & McKnight, C. (1978). Cognitive Processes in

Learning Algebra. J. of Children’'s Mathematical Behavior, 2, pp.

1' 320 .
Du Boulay, B. & O'Shea, T. (1981). Teaching novices programming. In M.

Coombs & J. Alty (Eds.), Computing skiils and the user interface

London: Academic Press. pp. 147-200.

Gentmer, D. & Stevens, A. L. (Eds.). (1983). Mental Models. Hillsdale,

NJ: Erlbaum.

Kuechemann, D. (1981). Algebra: In Children's Understanding of

Mathematics: 11-16 ed. K. M. Hart: Murray: London, pp. 102-119.

Larkin, J. H., McDermott, J., Simon, D.P. & Simon, H.A. (1980). Models

of competence in solving phys/ . problems. Cognitive Science, 4,

pp. 317-345.

31

- 30 -

Lemos, R. S. (1975). FORTRAN programming: an analysis of pedagogical

alternatives. J. of Educ. Data Processing. 12. pp. 21-29.

Norman, D. A. (1983). Some observations on mental models in Mental
Models edited by Gentner, D & Stevents, A. Erlbaum.

Putnam, R. T., "'eeman, D., Baxter, J. A. & Kuspa, L. K. (in press). A
Summary of Misconceptions of High School BASIC Programmers.

Ripley, G. D. & Druseikis, F. C. (1978). A statistical analysis of

syntax errors. Computer Languages, 3, pp. 227-240.

Sheil, B. The plychelogicil study of programming. (1981) Computing

Surveys, 13, pp. 101-120.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior.

Int., J. Computer Information Science, 5, pp. 123-143.

Sleeman, D. (in press) An Attempt to understand student's understanding

of basic algebra. Cognitive Science.

Sleeman, D. (in preparation). Protocol Analysis & Interviewing: some
methodological issues.

Soloway, E., Ehrlich, K., Bonmar, J., & Greenspan, J. (1982). What do
novices know about programming? In A. Badre and B. Shneiderman

(Eds.), Directions in human/computer interaction Norwood, NJ:

Ablex. pp 27-54.

Wegner, P. (1968). Programying Languages: Information Structures

and Machine Organization. McGraw Hill, pp. 84-91,

32

Footnotes

1. Also Computer Science Department.

2. Lemos, (1975) claims that the approach of analyzing complete prograns
vas no more effective than the traditional one — however, we feel that
this importsant line of investigation should not be abandoned because of a

single negative data point.

3. That is given a WHILE statement of the form:

WHILE cond DO
BEGIN S1;

Sn
END
after executing & statement Si, of the WHILE body they would check to see
whether the COND is still true, if not they would skip the remaining

statements.
4., Most students had some prior exposure to BASIC; the effect of a
previous programming language on & second language is an issue to be

considered in a further study.

5. It is difficult to categorize unambiguously many of the errors noted.

For example: is the last error mentioned a "READ" or a "“variable" error?

33

In this paper we make an arbitrary assignment to a class which seems

reasonable; in some cases we discuss possible alternative categories.
6. The convention used in this and subsequent programs is that the data
#s provided in brackets immediately following the program; multiple

brackets indicates multiple sets of data.

7. Following the recent distinctions introduced to designate the level

of an expert system's knowledge of its domain.

8. Also encountered in algebra (Kuechemann, 1981).

34

